Utilization of agent based modelling for energy planning –
Transport energy demand modelling

T. Novosel, L. Perković, M. Ban, T. Pukšec, G. Krajačić, N. Duić
University of Zagreb; Faculty of Mechanical Engineering and Naval Architecture, Department of Energy, Power Engineering and Environment
Ivana Lučića 5; 10002 Zagreb; Croatia

The transport sector represents a serious energy consumer in most energy systems across the EU and wider. In Croatia for example, the transport sector accounted for 32.8% of the final energy consumption in 2011 making it the second most energy demanding sector right after buildings with 43% and a large portion of that energy demand is linked to road transport and personal vehicles. Because of their higher efficiency, a modal switch from conventional internal combustion engines (ICE) to electric vehicles (EVs) has the potential to greatly reduce the overall energy demand of the transport sector. Our previous work has shown that a widespread electrification of the personal vehicle fleet could reduce the total final energy demand of the transport sector in Croatia by roughly 53% by the year 2050 when compared with a business as usual scenario. This represents a saving of 89 PJ of energy. If a modal split from road and air to rail transport is taken into account as well, this savings could be increased to 59% or 99 PJ. A potential issue regarding a high penetration of EVs is their impact on the electricity demand, especially peak demand. In order to properly analyse this impact it is crucial to model the hourly distribution of energy demand of EVs, and with this data analyse their impact on the electricity grid.

The goal of this work is to model the hourly distribution of the energy consumption of EVs and use the calculated electricity load curves to test their impact on the Croatian energy system. The hourly demand for the transport sector has been calculated using the agent-based modelling tool MATSim on a simplified geographic layout. The impact EVs have on the energy system has been modelled using the EnergyPLAN advanced energy system analyses tool.

INTRODUCTION

The transport sector represents a serious energy consumer in most energy systems across the EU and wider. In Croatia for example, the transport sector accounted for 32.8% of the final energy consumption in 2011 making it the second most energy demanding sector right after buildings with 43% [1]. In the last decade, the final energy demand of the transport sector has increased by approximately 70% due to a verity of reasons including economic growth and large investments into a modern highway infrastructure [2]. These numbers demonstrate a large potential for energy savings related to it especially if we consider the increase in transport demand and low efficiency of standard internal combustion engines (ICE).

As it has already been demonstrated in our previous work [2], a widespread electrification of the personal vehicle fleet could reduce the total final energy demand of the transport sector in Croatia by roughly 53% by the year 2050 when compared with a business as usual scenario. This represents a saving of 89 PJ of energy. If a modal split from road and air to rail transport is taken into account as well, this savings could be increased to 59% or 99 PJ. Other authors have already demonstrated the benefits that electrification can have on an energy system when it comes to greenhouse gas emissions [3], [4] and [5] but in order to properly asses their impact on a system as a whole an hourly analysis has to be implemented. This is necessary to accommodate for the increase of peak demand of electricity and the potential for the utilization of batteries of parked electric vehicles (EVs) as energy storage mediums that can increase the possibility for the penetration of intermittent renewable energy sources (RES). The importance of the implementation of energy storage technologies on the penetration of intermittent RES has already been discussed by several authors [6], [7] and [8].

There are a variety of approaches already available for the forecast of the annual energy demand of the transportation sector such as the ones described in [9], [10] and [11] but, as it has been already stated earlier, an hourly distribution is needed here. To accommodate for this, agent based modelling (ABM) has been utilized in the case of this work.

The Goal of this work is to model the hourly distribution of the transport energy demand and utilize that data to analyse the impact personal EVs can have on the potential for the penetration of wind and PV power in an energy system. The agent based transportation system modelling tool MATSim [12] has been used to generate said distribution and the EnergyPLAN [13] advanced energy system analysis tool has been utilized to model Croatia’s energy system and conduct the analysis.
1. METHODOLOGY AND CASE STUDY FOR CROATIA

The data gathering and processing and the development of the case study for Croatia using both MATSim and EnergyPLAN has been explained here.

1.1. Hourly distribution of the transport energy demand

In order to create an hourly energy demand curve for the Croatian road transport sector, more precisely personal vehicles, 4 individual distributions have been created for the cities of Zagreb, Rijeka, Split and Osijek. The sum of the four curves is used to represent the distribution for Croatia.

To accomplish this MATSim, an ABM tool has been used. MATSIM provides a framework to implement large-scale agent-based transport simulations with exceptional modularity. Its modules can be combined or used stand-alone or even replaced by new implementations. Since the field of fully electric vehicle modelling introduces specifics into the traffic modelling, the MATSIM platform was selected for this work.

Inputs required by the MATSim are divided into the following categories:

- **population**: provides agent's identification (agent ID number), age, working municipality and longitudinal and lateral coordinates of home location
- **activity plan**: tells agent at which location (work, home, leisure, shopping) they should be at the specified time
- **network**: provides the detailed network for each city under the consideration and only the main roads outside the city limits
- **facilities (optional)**: provides the longitudinal and lateral coordinates of non-home locations

The quality of the solution obtained by MATSim will be closer to reality if the input data resides on real-world observations. The best possible scenario is when each single agent represents one surveyed person, but this is highly impractical and impossible to get. Therefore, input data has to rely on survey conducted among a limited number of surveyed people and set of data that is usually available in aggregated form. In order to reduce the number of input data and simplify the preparation of MATSim inputs, the following assumptions are used:

- the only activities are home and work
- there are no holidays within the year

![Network of Croatia's main roads coupled with the detailed road network in the four biggest cities overlaid with the facilities presenting agent's home and work activity locations.](image)
In order to find the population and activity plan inputs for the four biggest Croatian cities, the spatial distribution of home and work locations were estimated based on the socio-demographic data, available as aggregated values at the municipality level, building density per area and the official addresses of registered companies. Since the municipalities are too big to provide a sufficiently fine resolution of home and work locations, they are further divided into 200 x 200 m rectangular cells. At this resolution, the home and work locations can be found and overlaid over the road network, as presented in Figure 1 for the case study of Croatia.

Aggregated values for population and number of households for city municipalities can be found at the official web pages of each city [14], [15], [16] and [17] and boundaries of each city municipalities can be found as polygon data from the Google Earth [18]. The buildings density per area is estimated from the percentage of each cell area covered by the building polygons, divided by the total area of the cell. Buildings polygon data are taken from the Geofabrik online database [19]. The addresses of companies are extracted from the Croatian Chamber of Economy (CoE) [20].

Table 1 Aggregated socio-demographic input data for Croatia's four biggest cities

<table>
<thead>
<tr>
<th></th>
<th>Zagreb (ZG)</th>
<th>Split (ST)</th>
<th>Rijeka (RI)</th>
<th>Osijek (OS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of employed (2011 census)</td>
<td>322.256</td>
<td>63.561</td>
<td>50.494</td>
<td>38.786</td>
</tr>
<tr>
<td>% of employed driving a car</td>
<td>62 [22] 77 [23]</td>
<td>62 [est.]</td>
<td>62 [est.]</td>
<td>62 [est.]</td>
</tr>
<tr>
<td>Estimated number of agents travelling by car</td>
<td>199.798</td>
<td>39.407</td>
<td>31.306</td>
<td>24.047</td>
</tr>
</tbody>
</table>

Total number of employees is provided by the Croatian Bureau of Statistics [21]. Total number of agents for each city municipality is estimated as a total number of employees multiplied by a percentage of employees having personal vehicles as a mode of transport [22]. Activity plan for each agent should provide the coordinates of each activity and their time series during the day. Activities are different for the work day or weekend. In this work, the only activities are home and work. Home location for each agent is found among the available cells taking into account the probability of the building density. An example for the city of Zagreb is given in Figure 2.

![Figure 2 Distribution of building densities in Zagreb city; each square is a cell with dimensions 200 x 200 m](image)

Finding the work location for each agent is divided into two steps. In the first step, the municipality of the work location is found from the solution of the origin-destination (O-D) matrix, whose rows represent probabilities of work municipalities and it's sum of column values corresponds to total number of registered businesses for each municipality, normalized by the total number of businesses. The O-D
matrix is solved by the iterative proportional fitting (IPF) algorithm. The penalty function for the IPF procedure is the interpolation between the O-D matrix distance values between municipalities and the daily driven kilometres from the input survey [23], Fig.3. In the second step, the exact cell of the work location cell is found from the building density within the target municipality, by following the same procedure as in the case of finding the home locations.

![Figure 3](image1.png) Average daily driven kilometres obtained from the survey (left) and the resulting O-D matrix of the probabilities for work municipalities for the City of Zagreb (right)

From Figure 3 three municipalities can be recognized as municipalities with the most registered businesses, which follows directly from the CoE inputs. Time series are constructed from the assumption that departures from the home, work and leisure/shopping locations follow the normal distribution. Typical distributions for the work day and the weekend are presented in Figure 4. The network is extracted from the OpenStreetMap data, region Europe, sub-region Croatia, downloaded from the Geofabrik web server [19].

![Figure 4](image2.png) Time series probabilities for activities home, work and leisure/shopping for work day (left) and weekend (right)

1.2. Modelling of Croatia’s energy system

In order to analyse the impact EVs have on the grid a reference model of Croatia’s energy system has been created in EnergyPLAN. EnergyPLAN is a deterministic input output computer modelling tool that creates an annual analysis of an energy system with a time step of one hour. It requires a wide range of input data including the total annual demands and hourly demand curves for electricity, installed capacities and efficiencies of different types of energy producers (both renewable and non-renewable) and energy storage technologies, fuel mix, hourly distribution of energy production from intermittent sources like wind, solar and small hydro, the energy demands for different sectors including transport, hourly distribution of transport energy demand, vehicle to grid connection capacities, different regulation strategies and so on. The results of the model include energy balances, annual and hourly energy production by source and the critical excess of electricity production (CEEP) present in the system, fuel consumptions by fuel type, total cost of the system, CO₂ emissions and so on.

EnergyPLAN specializes in the large scale integration of RES in energy systems [24] and [25], the optimal combination of RES [26] and the implementation of CHP units in energy systems [27]. It has
already been used to recreate many different energy systems and devise numerous energy scenarios. For example, authors of [24] and [28] used the model to simulate different scenarios for the Macedonian energy system. In [27] and [29] EnergyPLAN has been used to model the Danish energy system and to analyze the potential for the integration of RES. The authors of [30] used both the EnergyPLAN and the H2RES [31] models to recreate the Croatian energy system and plan a 100% energy independent scenario. EnergyPLAN has already been used to analysis of the impact of the transport sector, especially electric vehicles, on an energy system [32] and [33] in the past.

As it has already been mentioned, EnergyPLAN requires a wide variety of inputs. The fuel mix of the large thermal power plants as well as the energy use of the individual sectors has been adopted form the International Energy Agencies (IEA) web site [34]. The hourly electricity load has been taken from the web site of the European Network of Transmission System Operators for Electricity [35]. Meteorological data including global insolation and wind speeds have been taken from Meteonorm [36] and used to calculate the hourly production from wind power and PV. The obtained annual figures were then compared with the data available on the IEA website [34]. These data is presented below in Table 2. The installed capacities of the installed power plants have been taken from [1] and [37] and the statistical information related to the number of personal vehicles from [38].

A minimal grid stabilization share, the minimum production of electricity from power plants capable of providing ancillary services in relation to the total production of electricity, has been set to 30% in all scenarios. The minimal capacity of thermal power plants (PP min) of 42% has been assumed. The technical regulation strategy number 2 has been used “Balancing both heat and power demands”. The impact of different optimisation criteria on energy systems has been discussed in [39] in great detail. The CO2 content of the different fuels has been taken from [28].

Table 2 Validation of the EnergyPLAN model

<table>
<thead>
<tr>
<th></th>
<th>EnergyPLAN</th>
<th>Iea.org [34]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total CO2 emissions</td>
<td>18.11 Mt</td>
<td>18.77 Mt</td>
</tr>
<tr>
<td>Electricity produced from fossil fuels</td>
<td>6.00 TWh</td>
<td>6.01 TWh</td>
</tr>
<tr>
<td>Electricity produced from hydro energy</td>
<td>4.63 TWh</td>
<td>4.62 TWh</td>
</tr>
<tr>
<td>Electricity produced from renewables</td>
<td>0.20 TWh</td>
<td>0.201 TWh</td>
</tr>
<tr>
<td>Electricity produced from nuclear</td>
<td>2.97 TWh</td>
<td>0 TWh</td>
</tr>
<tr>
<td>Electricity import</td>
<td>4.73 TWh</td>
<td>8.730 TWh</td>
</tr>
<tr>
<td>Electricity export</td>
<td>0.01 TWh</td>
<td>1.033 TWh</td>
</tr>
<tr>
<td>Import – export + nuclear</td>
<td>7.69 TWh</td>
<td>7.697 TWh</td>
</tr>
</tbody>
</table>

In order to validate the created scenario, several parameters calculated by EnergyPLAN have been compared to the ones listed on the IEA web site. Table 2 presents the comparison of the results obtained from EnergyPLAN and the data from the IEA [34]. As the table shows, there is a difference of 3.5% between the calculated CO2 emissions and the ones listed by the IEA. This is due to the emission factors that the IEA uses. The electricity production from fossil fuels, hydro and renewables is almost identical for both cases. The great difference between the electricity produced from nuclear energy and the import and export of electricity is due to the way the IEA regards the nuclear power plant in Krško, Slovenia. It is partially owned by Croatia and partially by Slovenia but since it is located outside of Croatia’s borders, the electricity it produces and distributes to Croatia is regarded as import. If we add up the electricity generated by it with the electricity import and export, the resulting values are almost identical.

2. RESULTS

2.1. MATSim results

Results obtained from MATSim are time series of kilometres that vehicles travel for each day of the week for each of the four cities taken into consideration, Figure 5.
The time series of travelled distance is strongly following the time series of prescribed activities. The city of Zagreb is the most dominant in the aggregated value.

2.2. EnergyPLAN results

In order to analyze the impact of EVs on Croatia’s energy system, 12 scenarios have been devised. The first 6 scenarios analyse the potential for the penetration of wind power for a baseline scenario with EVs and 5 scenarios with EV penetration of 10%, 20%, 30%, 40% and 50%. The second set of 6 scenarios analyse the same scenarios but for PV penetration. The wind and PV penetrations are varied from 0% to 50% of the total electricity demand (excluding EVs), meaning that the production of electricity from wind or PV equals 0% to 50% of the total electricity demand excluding EVs, with a step of 5%.

Figure 6 presents the total fuel consumption excluding RES for the six scenarios with wind (top figure) and PV (bottom figure). As it is expected, the scenarios with a higher penetration of RES have lower fuel consumption and the increase in the penetration of EVs also has a positive effect on its reduction. This is primarily due to the fact that EVs are considerably more efficient, upwards of 300% more in some cases, but also because the increase of their penetration presents a storage capacity for excess electricity and thus can increase the potential for the penetration of intermittent RES like wind and PV.

In this work the average efficiency of vehicles with ICEs was presumed to be 1.5 km/kWh and for EVs 5 km/kWh. A 50% share of EVs can reduce the total fuel consumption of the whole system (including all sectors not just energy and transport) from the base value of 83.34 TWh to 73.11 TWh which is a difference of 10.23 TWh or 12.3%. Higher penetrations of RES do not have a significant impact on the reduction of fuel consumption; in the baseline scenario a 50% penetration of wind power reduces the total fuel consumption from the base value of 83.34 TWh to 80.35 TWh, a difference of merely 3.5%. The results are fairly similar for PV with a reduction of 3.26%. This is true because of the high dependence on imported electricity which doesn’t register as fuel consumption. When such import is replaced with electricity from RES, fuel consumption of the system stays almost unchanged.
Figure 6 Fuel consumption excluding RES for scenarios with wind (top) and PV (bottom).

Figure 7 presents the annual CO₂ emissions for the six scenarios with wind (top figure) and PV (bottom figure). The data on the figures closely follow the trend of the fuel consumption presented in Figure 6, which is to be expected. A 50% share of EVs has reduced the total annual CO₂ emissions of the whole energy system, again including all sectors, from the initial value of 18.13 Mt to 15.48 Mt, a reduction of 14.6% in the presented scenarios. Again, similar to the results presented in the previous figure, the penetration of RES doesn’t affect the CO₂ emissions significantly for the same reason it doesn’t influence fuel consumption. Both for a wind and for a PV penetration of 50% the total CO₂ emissions are reduced to 17.3 Mt, a reduction of 4.6%.
3. CONCLUSION

Agent based modelling can be a strong tool for the modelling of the hourly distribution of energy demand of the transport sector. As it has already been stated, the quality of the results of the modelling will be highly dependent on the quality of the inputs. The obtained hourly energy demand curves for the Croatian road transport sector has been used in the EnergyPLAN tool to analyse the impact of electric vehicles on Croatia’s energy system and the potential for the increase of the penetration of wind power and PV. The results have shown that the electrification of the road transport sector can help reduce the fuel consumption by 12.3% and CO$_2$ emissions by 14.6% for the case of no renewables and a 50% share of electric vehicles. These numbers are even greater when higher penetrations of renewables are taken into account.

Future work related to this paper will include the development and utilization of a detailed survey aimed at the energy consumption of personal transport and the validation and further refinement of the obtained distributions.

ACKNOWLEDGMENT
The authors are grateful for support by the Croatian Science Foundation for financing this work through the project iRESEV (no. 09/128).

REFERENCES

[22] F. Foundation for the Automobile and Society, “The Automobile and Society”.

